Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7240, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538671

RESUMO

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O 2 ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood. Here, we use a submesoscale-resolving numerical model to document the detailed biogeochemical mass balance of nitrogen, carbon and oxygen, their physical transport, and effects on offshore habitats. Despite management of terrestrial nutrients that has occurred in the region over the last 20 years, coastal eutrophication continues to persist. The input of anthropogenic nutrients promote an increase in productivity, remineralization and respiration offshore, with recurrent O 2 loss and pH decline in a region located 30-90 km from the mainland. During 2013 to 2017, the spatially averaged 5-year loss rate across the Bight was 1.3 mmol m - 3 O 2 , with some locations losing on average up to 14.2 mmol m - 3 O 2 . The magnitude of loss is greater than model uncertainty assessed from data-model comparisons and from quantification of intrinsic variability. This phenomenon persists for 4 to 6 months of the year over an area of 278,40 km 2 ( ∼ 30% of SCB area). These recurrent features of acidification and oxygen loss are associated with cross-shore transport of nutrients by eddies and plankton biomass and their accumulation and retention within persistent eddies offshore within the SCB.


Assuntos
Ecossistema , Eutrofização , Humanos , Plâncton , Nitrogênio , Oxigênio
2.
Sci Adv ; 6(20): eaay3188, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32440538

RESUMO

Climate warming is expected to intensify hypoxia in the California Current System (CCS), threatening its diverse and productive marine ecosystem. We analyzed past regional variability and future changes in the Metabolic Index (Φ), a species-specific measure of the environment's capacity to meet temperature-dependent organismal oxygen demand. Across the traits of diverse animals, Φ exhibits strong seasonal to interdecadal variations throughout the CCS, implying that resident species already experience large fluctuations in available aerobic habitat. For a key CCS species, northern anchovy, the long-term biogeographic distribution and decadal fluctuations in abundance are both highly coherent with aerobic habitat volume. Ocean warming and oxygen loss by 2100 are projected to decrease Φ below critical levels in 30 to 50% of anchovies' present range, including complete loss of aerobic habitat-and thus likely extirpation-from the southern CCS. Aerobic habitat loss will vary widely across the traits of CCS taxa, disrupting ecological interactions throughout the region.


Assuntos
Clima , Ecossistema , Animais , California , Mudança Climática , Peixes , Oxigênio , Temperatura
3.
Science ; 333(6040): 336-9, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21659566

RESUMO

Oxygen (O(2)) is a critical constraint on marine ecosystems. As oceanic O(2) falls to hypoxic concentrations, habitability for aerobic organisms decreases rapidly. We show that the spatial extent of hypoxia is highly sensitive to small changes in the ocean's O(2) content, with maximum responses at suboxic concentrations where anaerobic metabolisms predominate. In model-based reconstructions of historical oxygen changes, the world's largest suboxic zone, in the Pacific Ocean, varies in size by a factor of 2. This is attributable to climate-driven changes in the depth of the tropical and subtropical thermocline that have multiplicative effects on respiration rates in low-O(2) water. The same mechanism yields even larger fluctuations in the rate of nitrogen removal by denitrification, creating a link between decadal climate oscillations and the nutrient limitation of marine photosynthesis.


Assuntos
Mudança Climática , Ecossistema , Oxigênio/análise , Água do Mar/química , Anaerobiose , Simulação por Computador , Desnitrificação , Nitrogênio/metabolismo , Oceanos e Mares , Oxigênio/metabolismo , Oceano Pacífico , Temperatura , Fatores de Tempo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...